
ROLLO -
Rank-Ouroboros, LAKE

& LOCKER

April 21, 2020

ROLLO is a compilation of three candidates to NIST’s competition for post-quantum
cryptography standardization. They are based on rank metric codes and they share the same
decryption algorithm for LRPC codes (see Sec.1).

Rank-Ouroboros (formerly known as Ouroboros-R) and LAKE are IND-CPA KEM run-
ning in the category “post-quantum key exchange”. LOCKER is an IND-CCA2 PKE running
in the category “post-quantum public key encryption”. Different sets of parameters for these
three cryptosystems are proposed for security strength categories 1, 3, and 5.

For clarification reasons, we have chosen to uniformize the name of our protocols. In
the following document,

• LAKE is renamed ROLLO-I,

• LOCKER is renamed ROLLO-II,

• Rank-Ouroboros is renamed ROLLO-III.

(not considered anymore in April 2020 update)

Principal Submitters (by alphabetical order):
• Carlos Aguilar Melchor
• Nicolas Aragon
• Magali Bardet
• Slim Bettaieb
• Loïc Bidoux
• Olivier Blazy
• Jean-Christophe Deneuville

• Philippe Gaborit
• Adrien Hauteville
• Ayoub Otmani
• Olivier Ruatta
• Jean-Pierre Tillich
• Gilles Zémor

Inventors: Same as submitters

Developers: Same as submitters

1

Owners: Same as submitters

The PhD of Nicolas Aragon was partially funded by French DGA.
Main contact

x Philippe Gaborit
@ philippe.gaborit@unilim.fr
H +33-626-907-245
= University of Limoges
B 123 avenue Albert Thomas

87 060 Limoges Cedex
France

Backup point of contact
x Adrien Hauteville
@ adrien.hauteville@inria.fr
H +33-642-709-282
= INRIA Saclay
B 1 rue Honoré d’Estienne d’Orves

Bâtiment Alan Turing
Campus de l’École Polytechnique
91120 Palaiseau
France

2

mailto:philippe.gaborit@unilim.fr
mailto:adrien.hauteville@protonmail.com

1 History of updates on ROLLO

1.1 Updates for April 22nd, 2020

• For sake of simplicity we now only consider the ROLLO-I and ROLLO-II schemes.
These two schemes correspond to two versions of a unique protocol with adapted
parameters depending on the expected DFR. ROLLO-I has small public keys when
ROLLO-II has larger ones but a smaller DFR.

• New results on algebraic attacks for rank metric [4, 5] now provide a clear and better
understanding of algebraic attacks against the rank syndrome decoding problem. As
a consequence, we have updated our parameters in order to resist these attacks. The
new parameters are presented in section 2.7. Roughly speaking the size of the key
has increased by a factor of order 40% and our parameters remain attractive. For
instance the size of the public key for ROLLO-I-128 is now 696 Bytes.

• In order to keep small parameters, we modified the decoding algorithm. We now
consider in Section 2.4 the original LRPC decoder rather than its optimization. This
simpler decoder permits to decode with smaller values of m (the degree of the field
extension) than the optimized decoder, and having a smaller m permits to have a
better resistance to algebraic attacks of [4, 5].

• We provide an implementation of the decoding algorithm implemented in a constant-
time way whenever relevant and which should not leak any sensitive information with
respect to timing attacks.

• We provide an optimized implementation leveraging AVX and CLMUL instructions.

• Our implementations no longer rely on third party libraries for finite field arithmetic.

• For 128 bits of security, we obtain the following sizes (in bytes) and performances (in
kilocycles) for ROLLO-I:

Public Key Ciphertext KeyGen Encaps Decaps Log2(DFR)
696 696 939 113 686 -28

3

1.2 Updates between Round 1 and Round 2

• The authors of ROLLO are the authors of LAKE, LOCKER and Ouroboros-R, plus
Magali Bardet and Ayoub Otmani.

• The names of the submissions have changed. LAKE becomes ROLLO-I, LOCKER
becomes ROLLO-II and Ouroboros-R becomes ROLLO-III.

• ROLLO-III uses ideal codes instead of quasi-cyclic codes for Ouroboros-R.

• We have updated the parameters of the schemes such that the weight of the error,
which is the most important parameter for the security, increases at each level of
security. In practice it leads to a small increase of parameters. Concerning ROLLO-
II, we have only kept the sets of parameters with a Decryption Failure Rate (DFR)
inferior to 2−128.

• We have reorganized the specifications for clarifications.

• We have added a description of the quantum speed-up in the section Known Attacks.

4

Contents
1 History of updates on ROLLO 3

1.1 Updates for April 22nd, 2020 . 3
1.2 Updates between Round 1 and Round 2 . 4

2 Specifications 7
2.1 Presentation of rank metric codes . 9

2.1.1 General definitions . 9
2.1.2 Ideal codes . 10

2.2 Difficult problems in rank metric . 11
2.3 The Low Rank Parity Check codes . 13
2.4 A support recovery algorithm . 14

2.4.1 Algorithm . 15
2.4.2 Probability of failure . 15

2.5 Presentation of the schemes . 17
2.5.1 ROLLO-I as a KEM . 17
2.5.2 ROLLO-II as a PKE . 18

2.6 Representation of objects . 18
2.6.1 Parsing vectors from/to byte strings 19

2.7 Parameters for our schemes . 19
2.7.1 General remarks . 19
2.7.2 ROLLO-I . 20
2.7.3 ROLLO-II . 20

3 Performances 21
3.1 ROLLO-I . 22
3.2 ROLLO-II . 22
3.3 Constant time Implementation . 23

4 Known Answer Test Values 23

5 Security 24
5.1 Security Models and Hybrid Argument . 24
5.2 IND-CPA security proof of ROLLO-I . 25
5.3 IND-CCA2 security proof of ROLLO-II . 25

5.3.1 IND-CPA security proof of the ROLLO-II PKE 25
5.3.2 A IND-CCA2 conversion of the ROLLO-II PKE 26

6 Known Attacks 27
6.1 Attack on the IRSD problem . 28
6.2 Structural attack on ideal LRPC codes . 28
6.3 Algebraic attacks . 29

5

6.4 Quantum speed-up . 30

7 Advantages and Limitations 31
7.1 Strengths . 31
7.2 Limitations . 31

References 31

6

Prologue

The public key encryption protocol NTRU [14] was introduced in 1998, the main idea
behind the protocol is that the secret key consists in the knowledge of a small Euclidean
weight vector, which is used to derive a double circulant matrix. This matrix is then seen
as a dual matrix of an associated lattice and a specific decoding algorithm based on the
knowledge of this small weight dual matrix is used for decryption.

This idea of having as a trapdoor a small weight dual matrix (with a specific associated
decoding algorithm) can naturally be generalized to other metrics. It was done in 2013
with MDPC [17] for Hamming metric and also in 2013 for Rank metric with LRPC codes
[8]. These three protocols derive from the same basic main idea, adapted for different
metrics, which have different properties in terms of efficiency, size of parameters and security
reduction.

The previous schemes have many nice features in terms of size of keys, size of exchanged
data and efficiency but suffer from the same weakness: their security do not reduce to a well
known problem but rather to a specific problem where a special structure is hidden in the
public matrix. Indeed the public matrix is generated by small weight vectors. Although
this problem is less specific than hidden structure in the McEliece setting, it remains a
potential weakness for these schemes (even if practically, one does not really know how to
use this type of structure for strongly more efficient attacks in the more general cases).

Recently a new approach called Ouroboros was presented in [1], this approach permits to
benefit from the nice features of the previous schemes, but at the same time has a reduction
to decoding random quasi-cyclic codes, rather than a more specific code. Of course this
comes at a cost: doubling the size of the ciphertext. ROLLO-I follows the idea of [1] for
rank metric. The resulting scheme benefits from the nice features of NTRU-like schemes but
has also a reduction to a generic problem, at the cost of doubling the size of the ciphertext,
also as all associated decoding algorithm for the NTRU-like family of schemes, there is a
decryption failure, but in the case of rank metric this decryption failure is low and perfectly
estimated.

This proposal is the fusion of three propositions to standardization for the post-
quantum cryptography NIST competition: LAKE, LOCKER and Rank Ouroboros (for-
merly Ouroboros-R). For uniformity reasons, they have been renamed ROLLO-I, ROLLO-II
and ROLLO-III respectively.

In the present for sake of simplicity we chose to concentrate on ROLLO-I and ROLLO-II.

2 Specifications
In the following document, q denotes a power of a prime p. The finite field with q elements
is denoted by Fq and more generally for any positive integer m the finite field with qm

elements is denoted by Fqm . We will frequently view Fqm as an m-dimensional vector space
over Fq.

7

We use bold lowercase (resp. uppercase) letters to denote vectors (resp. matrices).
Let P ∈ Fq[X] a polynomial of degree n. We can identify the vector space Fnqm with the

ring Fqm [X]/〈P 〉, where 〈P 〉 denotes the ideal of Fqm [X] generated by P .

Ψ : Fnqm ' Fqm [X]/〈P 〉

(v0, . . . , vn−1) 7→
n−1∑
i=0

viX
i

For u,v ∈ Fnqm , we define their product similarly as in Fqm [X]/〈P 〉: w = uv ∈ Fnqm is
the only vector such that Ψ(w) = Ψ(u)Ψ(v). In order to lighten the formula, we will omit
the symbol Ψ in the future.

To a vector v ∈ Fnqm we can associate an n × n square matrix corresponding to the
product by v. Indeed,

uv = u(X)v(X) (mod P)

=
n−1∑
i=0

uiX
iv(X) (mod P)

=
n−1∑
i=0

ui(X
iv(X) mod P)

= (u0, . . . , un−1)

v(X) mod P
Xv(X) mod P

...
Xn−1v(X) mod P

Such a matrix is called the ideal matrix generated by v and P , or simply by v when

there is no ambiguity in the choice of P .

Definition 2.0.1 (Ideal Matrix). Let P ∈ Fq[X] a polynomial of degree n and v ∈ Fnqm.
The ideal matrix generated v is the n× n square matrix denoted IM(v) of the form:

IM(v) =

v

Xv mod P
...

Xn−1v mod P

As a consequence, the product of two elements of Fqm [X]/〈P 〉 is equivalent to the usual

product vector-matrix:
uv = uIM(v) = IM(u)Tv = vu.

Let S be a finite set. x
$← S means that x is an element of S, chosen uniformly at

random.

8

2.1 Presentation of rank metric codes

2.1.1 General definitions

Definition 2.1.1 (Rank metric over Fnqm). Let x = (x1, . . . , xn) ∈ Fnqm and (β1, . . . , βm) ∈
Fmqm a basis of Fqm viewed as an m-dimensional vector space over Fq. Each coordinate xj
is associated to a vector of Fmq in this basis: xj =

∑m
i=1 xijβi. The m× n matrix associated

to x is given by M (x) = (xij)16i6m
16j6n

.

The rank weight ‖x‖ of x is defined as

‖x‖ def
= RankM (x).

The associated distance d(x,y) between elements x and y in Fnqm is defined by d(x,y) =
‖x− y‖.

Definition 2.1.2 (Fqm-linear code). An Fqm-linear code C of dimension k and length n is
a subspace of dimension k of Fnqm embedded with the rank metric. It is denoted [n, k]qm.
C can be represented by two equivalent ways:

• by a generator matrix G ∈ Fk×nqm . Each row of G is an element of a basis of C,

C = {xG,x ∈ Fkqm}

• by a parity-check matrix H ∈ F(n−k)×n
qm . Each row of H determines a parity-check

equation verified by the elements of C:

C = {x ∈ Fnqm : HxT = 0}.

HvT is called the syndrome of v (with respect to H).

We say that G (respectively H) is under systematic form if and only if it is of the form
(Ik|A) (respectively (In−k|B)).

Definition 2.1.3 (Support of a word). Let x = (x1, . . . , xn) ∈ Fnqm. The support E of x,
denoted Supp(x), is the Fq-subspace of Fqm generated by the coordinates of x:

E = 〈x1, . . . , xn〉Fq

and we have dimE = ‖x‖.

The number of supports of dimension w of Fqm is denoted by the Gaussian coefficient[
m
w

]
q

=
w−1∏
i=0

qm − qi

qw − qi
.

9

2.1.2 Ideal codes

One of the difficulty with code-based cryptography is the size of the key. Indeed, to represent
an [n, k]qm code with a systematic matrix, we need k(n−k) symbols in Fqm , or k(n−k) dlog qe
bits. In order to reduce the size of the representation of a code, we introduce the family
of ideal codes, which are basically codes with a systematic generator matrix formed with
blocks of ideal matrices. More formally,

Definition 2.1.4 (Ideal codes). Let P (X) ∈ Fq[X] be a polynomial of degree n. An
[ns, nt]qm code C is an (s, t)-ideal code if its generator matrix under systematic form is
of the form

G =

 IM(g1,1) . . . IM(g1,s−t)

I tn
...

IM(gt,1) . . . IM(gt,s−t)

where

(
gi,j
)
i∈[1..s−t]
j∈[1..t]

are vectors of Fnqm. In this case, we said that C is generated by the (gi,j).

It would be somewhat more natural to choose the generator matrix to be made up of
s× t ideal matrices, rather than to require the code to admit a systematic generator matrix.
However, if m and n are two different prime numbers and if P is irreducible, a nonzero ideal
matrix is always non-singular. To prove this, we need the following lemma:
Lemma 1. Let m and n be two different prime numbers. Let P ∈ Fq[X] be an irreducible
polynomial of degree n and U ∈ Fqm [X] a non zero polynomial of degree at most n − 1.
Then P and U are co-prime in Fqm [X].

Proof. We will show that P and U have no common root. Let Z(P) (respectively Z(U))
be the set of the roots of P (respectively U).

Since P is irreducible of degree n, its roots generate Fqn

=⇒ Z(P) ⊂ Fqn\Fq

Since U is of degree at most n, its roots belong to Fqm(n−1)! .
But GCD(n,m(n− 1)!) = 1 for m and n are two different prime numbers. Thus

Fqm(n−1)! ∩ Fqn = Fq =⇒ Z(P) ∩ Z(U) = ∅

Hence, P and U are co-prime.

Now, let u ∈ Fnqm a non zero vector and P ∈ Fq[X] an irreducible polynomial of degree
n. According to the lemma, there exist a vector v ∈ Fnqm such that

uv = 1 (mod P)

⇐⇒ uIM(v) = (1, 0, . . . , 0)

⇐⇒ IM(u)IM(v) = In

10

This demonstrates that every block of ideal matrix of G is non-singular, hence C can be
represented under systematic form. �

All the parameters we propose in Section 2.7 verify these conditions.

Remark 2.1. With this definition, the ideal codes can be seen as a generalization of Quasi-
Cyclic codes. Indeed, the generator matrix under systematic form of a Quasi-Cyclic code
[6] is of the same form, except that the ideal matrices are replaced by circulant matrices.
Yet, an n× n circulant matrix can be seen as an element of Fqm [X]/〈Xn − 1〉. Thus ideal
codes only differ from Quasi-Cyclic codes by the choice of the polynomial P .

In our scheme, we only use [ns, n]qm ideal codes. In order to shorten the notation, we
denote these codes an s-ideal code. If C is an [sn, n] ideal code generated by (g1, . . . , gs−1),
we have C = {(u,ug1, . . . ,ugs−1),u ∈ Fnqm}.

We need to be careful when we use these notations in the case of parity-check matrix.
Indeed, the parity-check matrix under systematic form of C is of the form:

H =

 IM(h1)
T

In(s−1)
...

IM(hs−1)
T

 . (1)

Thus, if σ = (σ1 . . .σs−1) ∈ Fs(n−1)qm is the syndrome of an error e = (e1 . . . es−1) ∈ Fnsqm ,
the parity-check equations

HeT = σT

are equivalent to ei + hies−1 = σi for 1 6 i 6 s− 1.

2.2 Difficult problems in rank metric

In this section, we describe difficult problems which can be used for cryptography and
discuss their hardness. All problems are variants of the decoding problem, which consists
of looking for the closest codeword to a given vector: when dealing with linear codes, it is
readily seen that the decoding problem stays the same when one is given the syndrome of
the received vector rather than the received vector. We therefore speak of (rank) Syndrome
Decoding (RSD).

Definition 2.2.1 (RSD Distribution). For positive integers, n, k, and w, the RSD(n, k, w)

Distribution chooses H
$← F(n−k)×n

qm and x
$← Fnqm such that ‖x‖ = w, and outputs

(H, σ(x) = Hx>).

Definition 2.2.2 (Computational RSD Problem). On input (H,y>) ∈ F(n−k)×n
qm ×

F(n−k)
qm from the RSD distribution, the Computational Rank Syndrome Decoding Problem

RSD(n, k, w) asks to compute x ∈ Fnqm such that Hx> = y> and ‖x‖ = w.

11

The RSD problem has recently been proven difficult with a probabilistic reduction to the
Hamming setting in [11]. For cryptography we also need a decision version of the problem,
which is given in the following definition.

Definition 2.2.3 (Decision RSD Problem). On input (H,y>) ∈ F(n−k)×n
qm × F(n−k)

qm , the
Decision RSD Problem DRSD(n, k, w) asks to decide with non-negligible advantage whether
(H,y>) came from the RSD(n, k, w) distribution or the uniform distribution over F(n−k)×n

qm ×
F(n−k)
qm .

As our cryptosystem uses ideal codes, we explicitly define the problem on this setting.
The following definitions describe the DRSD problem in the ideal configuration, and are just
a combination of Definition 2.1.4 and 2.2.3. Ideal codes are very useful in cryptography
since their compact description allows to decrease considerably the size of the keys.

Definition 2.2.4 (s-IRSD Distribution). Let P ∈ Fq[X] an irreducible polynomial of degree
n. For positive integers n, w and s, let S(n, s) be the set of the parity-check matrices H
under systematic form of s-ideal codes of type [sn, n] (see Equation 1). The s-IRSD(n,w)

Distribution chooses uniformly at random a matrix H $← S(n, s) together with a vector
x = (x1, . . . ,xs)

$← Fsnqm such that ‖x‖ = w and outputs (H,Hx>).

Definition 2.2.5 (Computational s-IRSD Problem). Let P ∈ Fq[X] an irreducible poly-
nomial of degree n. For positive integers n, w, s, a random parity check matrix H under
systematic form of an s-ideal code C and y

$← Fsn−nqm , the Computational s-ideal RSD Prob-
lem s-IRSD(n,w) asks to compute x = (x1, . . . ,xs) ∈ Fsnqm such that ‖x‖ = w and y = xH>.

The problem has a decisional form:

Definition 2.2.6 (Decision s-IRSD Problem). Let P ∈ Fq[X] an irreducible polynomial
of degree n. For positive integers n, w and s, let S(n, s) be the set of the parity-check
matrices H under systematic form of s-ideal codes of type [sn, n] (see Equation 1). The
Decision s-Ideal RSD Problem s-DIRSD(n,w) asks to decide with non-negligible advantage
whether (H,y>) came from the s-IRSD(n,w) distribution or the uniform distribution over
S(n, s)× F(sn−n)

qm .

As for the ring-LPN problem, there is no known reduction from the search version of
s-IRSD problem to its decision version. The proof of [2] cannot be directly adapted in the
ideal case, however the best known attacks on the decision version of the problem s-IRSD
remain the direct attacks on the search version of the problem s-IRSD.

Finally we need to introduce a last problem which is useful for the security proof of our
schemes. (see Sections 5).

Problem 2.2 (s-Ideal Rank Support Recovery). Given a vector h1, . . . ,hs−1 ∈ Fnqm, a
polynomial P ∈ Fq[X] of degree n and a syndrome σ and a weight w, it is hard to recover
a support E of dimension lower than w such that e0 + e1h1 + . . . es−1hs−1 = σ (mod P)
where the vectors ei are of support E.

12

Hardness of the problem: We show that the s-IRSR problem and the s-IRSD problem
are equivalent.

The s-IRSR problem is trivially reduced to the s-IRSD problem. Indeed to recover the
support E of an instance of the s-IRSR problem from a solution x of the s-IRSD problem,
we just have to compute the support of x.

Reciprocally, the s-IRSD problem can also be reduced to the s-IRSR problem. We prove
this property for s = 2, the generalization is straightforward. Let us suppose we know the
support E of a solution of the 2-IRSR problem for a weight w. We want to find x = (x0,x1)
of weight lower than w such that x0 + x1h = σ (mod P).

This equation is equivalent to In IM(h)T

 (x0,0 . . . x0,n−1, x1,0 . . . x1,n−1)
T = σT (2)

where x0 = (x1,0 . . . x0,n−1) and x1 = (x1,0 . . . x1,n−1).
Let (E1, . . . , Ew) be a basis of E. We can express the coordinates of x0 and x1 in this

basis:

∀i ∈ {0, 1}, 0 6 j 6 n− 1, xij =
w∑
k=1

λijkEk, with λijk ∈ Fq

Then we rewrite the equations of (2) in the new unknowns λijk. We obtain a system of 2nw
unknowns over Fq and n equations over Fqm , so nm equations over Fq.

Since E is solution to the 2-IRSR problem, the system has at least one solution and by
construction all the solutions have their support included in E of dimension w, so we can
find a solution to the 2-IRSD problem by solving this system.

The complexity of known attacks against these problems are described in Section 6.

2.3 The Low Rank Parity Check codes

The LRPC codes have been introduced in [8]. They are good candidates for the cryptosys-
tem of McEliece because the have a weak algebraic structure.

Definition 2.3.1 (LRPC codes). Let H = (hij)16i6n−k
16j6n

∈ F(n−k)×n
qm a full-rank matrix such

that its coefficients generate an Fq-subspace F of small dimension d:

F = 〈hij〉Fq

Let C be the code with parity-check matrix H. By definition, C is an [n, k]qm LRPC code.
Such a matrix H is called homogeneous matrix of weight d and support F .

We can now define the ideal LRPC codes. As we will only use (2, 1)-ideal LRPC codes
in our cryptosystems, we restraint the following definition to this type of codes, but the
generalization is straightforward, such as we have done for ideal code.

13

Definition 2.3.2 (Ideal LRPC codes). Let F be a Fq-subspace of dimension d of Fqm,
(h1,h2) two vectors of Fnqm of support F and P ∈ Fq[X] a polynomial of degree n. Let

H =

IM(h1)
T IM(h2)

T

By definition, the code C with parity check matrixH is an ideal LRPC code of type [2n, n]qm.

As we can see, since P ∈ Fq[X], the support of X ih1 is still F for all 1 6 i 6 n−1 hence
the necessity to choose P with coefficients in the base field Fq to keep the LRPC structure
of the ideal code.

To hide the structure of an ideal LRPC, we only reveal its systematic parity-check
matrix.

Problem 2.3 (Ideal LRPC codes indistinguishability). Given a polynomial P ∈ Fq[X] of
degree n and a vector h ∈ Fnqm, it is hard to distinguish whether the ideal code C with the
parity-check matrix generated by h and P is a random ideal code or if it is an ideal LRPC
code of weight d.

In other words, it is hard to distinguish if h was sampled uniformly at random or as
x−1y mod P where the vectors x and y have the same support of small dimension d.

The ideal LRPC codes are particularly interesting if we choose an irreducible polynomial
for P . In this case we counter a structural attack against double circulant LRPC which can
be found in [12].

2.4 A support recovery algorithm

Notation 2.4. Let E be an Fq-subspace of Fqm of dimension r and F an Fq-subspace of
dimension d. We denote by EF the subspace generated the product of the elements of E
and F :

EF = 〈{ef, e ∈ E, f ∈ F}〉

Let (e1, . . . , er) be basis of E and (f1, . . . fd) a basis of F . It is clear that (eifj)16i6r
16j6d

is

a generator family of EF . In the typical case dimEF = rd (see [8], Section 3 for more
details on the probability). For the considered parameters, it can happen that dimEF < rd,
but this case is also covered by the decoding algorithm without any modification.

Let H ∈ F2n×n
qm be an homogeneous matrix of support F and e ∈ F2n

qm an error of support
E. Let C be the LRPC code with parity-check matrix H and s be the syndrome of e :
HeT = sT . In the following section S denotes the support of s, it is a subspace of EF so
its dimension is at most rd.

Si is defined by Si := f−1i S.

14

2.4.1 Algorithm

The decoding algorithm of LRPC codes first recovers the support of the error vector then
solves a linear system in order to recover the error coordinates. For these proposals, we only
need to recover the support of the error. The algorithm we present here uses the general
decoding algorithm of the LRPC codes described in [8] without the coordinates recovery
part.
Algorithm 1: Rank Support Recover (RSR) algorithm
Data: F = 〈f1, ..., fd〉 an Fq-subspace of Fqm , s = (s1, · · · , sn) ∈ Fnqm a syndrome of

an error e of weight r and of support E
Result: A candidate for the vector space E
//Part 1 : Compute the vector space EF

1 Compute S = 〈s1, · · · , sn〉
//Part 2 : Recover the vector space E

2 E ←
⋂d
i=1 f

−1
i S

3 Pre-compute every Si for i = 1 to d
4 return E

2.4.2 Probability of failure

First we remark that the previous decoding algorithm works even if the dimension of EF
is not maximal, this case happens scarcely and even in this case the intersection of the Si
is still E.

In fact there are only two cases that can make the algorithm fail:

• dimS < dimEF

• dim
⋂d
i=1 f

−1
i S > r

We consider in the following the probability of these events.

Proposition 2.4.1. The probability that dimS < dimEF is:

q−(n−rd+1)

Proof. As in [8] we use the fact that since the error is chosen randomly, every si can be
seen as a random element of EF , hence the probability that a set of n elements does not
generate the whole vector space of dimension rd (with n > rd) is given by the probability
that a random rd× n matrix over Fq is not invertible, i.e qn−rd+1.

For the second event dim
⋂d
i=1 f

−1
i S > r, we first prove the following result:

15

r r m log2(failure) from 2.4.2 log2(failure) from simulations
7 8 63 0 -0.50
7 8 64 -7 -7.01
7 8 65 -14 -14.07
7 8 66 -21 -20.91
7 8 67 -28 -28.19

Table 1: Simulation results for proposition 2.4.2

Proposition 2.4.2. Let V be the space Fqm and let r and d be two integers. Let E be a
fixed subspace of dimension r and let Ri, 1 ≤ i ≤ d, be d independently chosen random
subspaces of dimension rd containing the subspace E. The probability that dim

⋂d
i=1Ri > r

is bounded from above by:

qrd−r
(
qrd − qr

qm

)d−1
≈ q−(d−1)(m−rd−r).

Proof. It suffices to prove the proposition for r = 0, since the general result will follow from
the case r = 0 by applying it to the quotient space V/E. Fix the first subspace R1 and let
y ∈ R1, y 6= 0. The probability that y ∈ Ri equals (qrd − 1)/qm, and by independence the
probability that this occurs for all i = 2 . . . d is(

qrd − qr

qm

)d−1
. (3)

The expected number of non-zero vectors y in the intersection of all the spaces Ri is therefore
qrd − 1 times the quantity (3), hence the result, since the probability that such a vector y
exists is bounded from above by their expected number.

In practice, in our case the Ri correspond to the Si and they are not random, but since
Si = f−1i S, we consider the effect of the multiplication by a f−1i and we do the simplifying
assumption that the Si behave as random spaces in term of intersection. This assumption
is remarkably accurate when confronted with simulations as it is shown in Table 1. From
here on we consider that the probability that dim

⋂d
i=1 Si > r can be approximated by

q−(d−1)(m−rd−r) which fits very well all the simulations we have made.

From these two propositions we deduce the Decryption Failure Rate of the RSR algo-
rithm:

Proposition 2.4.3. Under the assumption (validated by simulations) that for intersections
the Si behave as random subspaces containing E, the Decryption Failure Rate of the RSR
algorithm 1 can be approximated by:

q−(d−1)(m−rd−r) + q−(n−rd+1)

16

2.5 Presentation of the schemes

In this subsection, Snw(Fqm) stands for the set of vectors of length n and rank weight w over
Fqm :

Snw(Fqm) = {x ∈ Fnqm : dim Supp(x) = w}

2.5.1 ROLLO-I as a KEM

A Key-Encapsulation scheme KEM = (KeyGen,Encap,Decap) is a triple of probabilistic
algorithms together with a key space K. The key generation algorithm KeyGen generates a
pair of public and secret key (pk, sk). The encapsulation algorithm Encap uses the public
key pk to produce an encapsulation c, and a key K ∈ K. Finally Decap using the secret
key sk and an encapsulation c, recovers the key K ∈ K or fails and return ⊥.

ROLLO-I is depicted in fig. 1, then formally described in fig. 2. The RSR algorithm
was presented in previous section. P is a irreducible polynomial of Fq[X] of degree n and
constitutes a parameter of the cryptosystem.

Alice Bob

(x,y)
$← S2n

d (Fqm), h← x−1y mod P
F ← Supp (x,y)

s← xc
E ← RSR (F, s, r)

Hash (E)

h−−−−−→

c←−−−−−

Shared
Secret

(e1, e2)
$← S2n

r (Fqm)
E ← Supp (e1, e2)

c← e1 + e2h mod P

Hash (E)

Figure 1: Informal description of ROLLO-I. h constitutes the public key.

Correctness: Alice recovers s = xc = xe1 + xe2h = xe1 + ye2 mod P , since E =
Supp(e1, e2), F = Supp(x,y) and P ∈ Fq[X], the coordinates of s generate a subspace of
EF on which Bob can apply the RSR algorithm to recover E.

• KeyGen(1λ): Picks (x,y)
$← S2n

d (Fqm). Sets h = x−1y mod P and return pk = h, sk = (x,y).

• Encap(pk): Picks (e1, e2)
$← S2n

r (Fqm), sets E = Supp(e1, e2), c = e1 + e2h mod P .
Computes K = Hash(E) and returns c.

• Decap(sk): Sets s = xc mod P , F = Supp(x,y) and E ← RSR (F, s, r).
Recovers K = Hash(E).

Figure 2: Formal description of ROLLO-I.

Computational costs. The costs are expressed in operations in the base field Fq. The
KeyGen cost corresponds to a polynomial modular inversion in Fqm [X]/〈P 〉, the Encap and

17

Decap costs correspond to a polynomial modular addition and a polynomial modular multi-
plication in Fqm [X]/〈P 〉, plus the decoding cost of the RSR algorithm for the decapsulation.

2.5.2 ROLLO-II as a PKE

A Public Key Encryption (PKE) scheme is defined by three algorithms: the key generation
algorithm KeyGen which takes on input the security parameter λ and outputs a pair of public
and private keys (pk, sk) ; the encryption algorithm Encrypt(pk,M) which outputs the
ciphertext C corresponding to the message M and the decryption algorithm Decrypt(sk, C)
which outputs the plaintext M .

Since ROLLO-II is almost identical to ROLLO-I, we only give its formal description
in fig. 3, the correctness and the computational costs are the same. P is a irreducible
polynomial of Fq[X] of degree n and constitutes a parameter of the cryptosystem. The
symbol ⊕ denotes here the bitwise XOR.

• KeyGen(1λ): Picks (x,y)
$← S2n

d (Fqm). Sets h = x−1y mod P and return pk = h, sk = (x,y).

• Encrypt(M, pk): Picks (e1, e2)
$← S2n

r (Fqm), sets E = Supp(e1, e2), c = e1 + e2h mod P .
Computes cipher = M ⊕ Hash(E) and returns the ciphertext C = (c, cipher).

• Decrypt(C, sk): Sets s = xc mod P , F = Supp(x,y) and E ← RSR (F, s, r).
Return M = cipher ⊕ Hash(E).

Figure 3: Formal description of ROLLO-II.

2.6 Representation of objects

Field elements. Elements of Fqm are represented as vectors of sizem over Fq. For ROLLO,
q is always chosen equal to 2 (see section 2.7) thus e ∈ Fqm is represented as (e0, . . . , em−1) ∈
Fm2 . In the reference implementation, elements are stored using 8× dm/64e bytes in which
the unused 64 × dm/64e − m bits are zero-padded. In the optimized implementation,
elements are stored using 16× dm/128e bytes in which the unused 128× dm/128e −m are
zero-padded. The first bit e0 corresponds to the constant coefficient of the polynomial e.

The polynomials used to construct F2m as an extension of F2 are given table 2.

m Pm
67 X67 +X5 +X2 +X + 1
79 X79 +X9 + 1
83 X83 +X7 +X4 +X2 + 1
97 X97 +X6 + 1

Table 2: Polynomials used to construct F2m .

18

Vectors. Elements of Fnqm are represented as n-dimensional arrays of Fqm elements.

Vector spaces. Let E be an Fq-subspace of Fqm and (e1, . . . er) ∈ Frqm a basis of E. We
suppose that Alice and Bob have agreed on a basis (β1, . . . , βm) of Fqm over Fq. There exists
a matrix M ∈ Fr×mq such that (e1, . . . er)

T = M(β1, . . . , βm)T . In order to have a unique
representation, the natural way is to choose the row echelon form ofM to represent E (this
is equivalent to choose a basis of E). This representation only depends on E. M is then
converted into a byte string before being hashed.

Seeds. The considered seed-expander has been provided by the NIST. It is initialized
with a byte string of length 40 of which 32 are used as the seed and 8 are used as the
diversifier. In addition, it is initialized with max_length equal to 232 − 1.

2.6.1 Parsing vectors from/to byte strings

Vectors of Fnqm are converted to byte strings using a compact representation, in which the
unused bits of each element are removed thus leading to a

⌈
nm
8

⌉
long byte string.

2.7 Parameters for our schemes

2.7.1 General remarks

In this Section, we propose several sets of parameters for ROLLO-I and ROLLO-II, achiev-
ing 128, 192, or 256 bits of security and corresponding therefore to NIST’s security strength
categories 1, 3, and 5 respectively.

All of our submissions use ideal codes over F2m in order to reduce the size of the key
and to allow to compute the syndrome of an error as sums and products of polynomials in
F2m [X]/〈P 〉, with P ∈ F2[X] of degree n. In order to avoid folding attacks (see [13]), P is
chosen irreducible. Moreover, to decrease the computational costs, we want P to be sparse.
We have obtained these polynomials with the Magma software. More details are available
at http://magma.maths.usyd.edu.au/magma/handbook/text/193#1685.

The best known attacks against our cryptosystems consist in solving an instance of the
IRSD problem. The most important parameter for the complexity of algorithms which solve
this problem is the weight of the error. That is why we want this parameter to increase at
each level of security. Moreover, in order to get homogeneous parameters, we choose the
same value for the weight of the error in all sets of parameters, 5 for 128 bits of security, 6
for 192 bits of security and 7 for 256 bits of security.

All the parameters have been chosen so that the best known attack requires at least
2λ elementary operations for λ bits of security. We refer the reader to Section 6 for more
details on best known attacks.

19

http://magma.maths.usyd.edu.au/magma/handbook/text/193#1685

2.7.2 ROLLO-I

Choice of parameters. In section 5.2, the security of the protocol is reduced to the
ILRPC problem 2.3 and the IRSR problem 2.2. Our parameters are chosen in function of the
best known attacks on these problems described in Section 6. Because of the recent results
of [4] and [5] the best attacks for our type of parameters (except for 128 security bits) are
now based on algebraic attacks and our parameters are chosen accordingly.

Notice that for 128 security bits parameters, the practical security is rather higher than
128 at about 170 bits. It was possible to have a smaller security parameter closer to 128
by considering smaller r and d, but since there was almost no advantage on the size of the
key, we chose to keep the security higher than 128.

The probability of decryption failure (DFR) comes from the probability that the RSR
algorithm 1 fails (see Proposition 2.4.3).

Size of parameters. One may use seeds to represent the random data in order to decrease
the keysize. We use the NIST seed expander initialized with 40 bytes long seeds.

The public key pk is composed of a vector h ∈ Fn2m , so its size is
⌈
nm
8

⌉
bytes.

The secret key sk is composed of two random vectors of Snd (F2m), so its size is 40 bytes.
The ciphertext ct is composed of a vector of Fn2m , so its size is

⌈
nm
8

⌉
bytes.

The shared secret ss is composed of K = Hash(E), so its size is 64 bytes (SHA512 output
size).

Instance q n m r d P security DFR
ROLLO-I-128 2 83 67 7 8 X83 +X7 +X4 +X2 + 1 128 2−28

ROLLO-I-192 2 97 79 8 8 X97 +X6 + 1 192 2−34

ROLLO-I-256 2 113 97 9 9 X113 +X9 + 1 256 2−33

Table 3: Parameters for ROLLO-I.

Instance pk size sk size ct size ss size Security
ROLLO-I-128 696 40 696 64 128
ROLLO-I-192 958 40 958 64 192
ROLLO-I-256 1371 40 1371 64 256

Table 4: Resulting sizes in bytes for ROLLO-I using NIST seed expander initialized with
40 bytes long seeds. The security is expressed in bits.

2.7.3 ROLLO-II

Choice of parameters. In section 5.3, the security of the protocol is reduced to the
ILRPC problem 2.3 and the IRSR problem 2.2. As for ROLLO-I our parameters are chosen in

20

function of the best known attacks on these problems described in Section 6, also algebraic
attacks for this type of parameters.

The probability of decryption failure (DFR) comes from the probability that the RSR
algorithm 1 fails (see Proposition 2.4.3).

Size of parameters. One may use seeds to represent the random data in order to decrease
the keysize. We use the NIST seed expander initialized with 40 bytes long seeds.

The public key pk is composed of a vector h ∈ Fn2m , so its size is
⌈
nm
8

⌉
bytes.

The secret key sk is composed of two random vectors of Snd (F2m), so its size is 40 bytes.
The ciphertext ct is composed of a vector of Fn2m and a message of 64 bytes masked

by random value obtained via an hash. To obtain the IND-CCA2 security, we need to add
another hash to the ciphertext (see Section 5.3.2 for more details) so the ciphertext size is⌈
nm
8

⌉
+ 2 ∗ 64 bytes (two hashes).

Instance q n m r d P security DFR
ROLLO-II-128 2 189 83 7 8 X189 +X6 +X5 +X2 + 1 128 2−134

ROLLO-II-192 2 193 97 8 8 X193 +X15 + 1 192 2−130

ROLLO-II-256 2 211 97 8 9 X211 +X11 +X10 +X8 + 1 256 2−136

Table 5: Parameters for ROLLO-II.

Instance pk size sk size ct size Security
ROLLO-II-128 1941 40 2089 128
ROLLO-II-192 2341 40 2469 192
ROLLO-II-256 2559 40 2687 256

Table 6: Resulting sizes in bytes for ROLLO-II using NIST seed expander initialized with
40 bytes long seeds. The security is expressed in bits.

3 Performances
This section provide performance measures of our implementations.

Benchmark platform. The benchmarks have been performed on a machine that has
16GB of memory and an Intel R© CoreTM i7-7820X CPU @ 3.6GHz for which the Hyper-
Threading, Turbo Boost and SpeedStep features were disabled. The scheme have been
compiled with gcc (version 9.2.0) and use the openssl (version 1.1.1d) library as a provider
for SHA2. For each parameter set, the results have been obtained by computing the mean
from 1000 random instances. In order to minimize biases from background tasks running
on the benchmark platform, each instances have been repeated 100 times and averaged.

21

3.1 ROLLO-I

Reference Implementation

The performance of our reference implementation on the aforementioned benchmark plat-
form are described in Tab. 7 (thousands of CPU cycles). The following compilation flags
have been used: -O3 -flto.

Instance KeyGen Encap Decrypt
ROLLO-I-128 3530 392 1062
ROLLO-I-192 4669 458 1284
ROLLO-I-256 6962 591 1992

Table 7: Performances of ROLLO-I reference implementation in thousands of CPU cycles.

Optimized Implementation

An optimized implementation using AVX2 instructions have been provided. Its perfor-
mances on the aforementioned benchmark platform are described in Tab. 8 (millions of CPU
cycles). The following compilation flags have been used: -O3 -flto -mavx2 - mpclmul
-msse4.2 -maes.

Instance KeyGen Encrypt Decap
ROLLO-I-128 939 113 686
ROLLO-I-192 1142 127 803
ROLLO-I-256 1582 151 1347

Table 8: Performances of ROLLO-I optimized implementation in thousands of CPU cycles.

3.2 ROLLO-II

Reference Implementation

The performance of our reference implementation on the aforementioned benchmark plat-
form are described in Tab. 9 (thousands of CPU cycles). The following compilation flags
have been used: -O3 -flto.

Optimized Implementation

An optimized implementation using AVX2 instructions have been provided. Its perfor-
mances on the aforementioned benchmark platform are described in Tab. 10 (thousands
of CPU cycles). The following compilation flags have been used: -O3 -flto -mavx2 -
mpclmul -msse4.2 -maes.

22

Instance KeyGen Encrypt Decap
ROLLO-II-128 16987 1309 3218
ROLLO-II-192 19153 1441 3684
ROLLO-II-256 22694 1643 4260

Table 9: Performances of ROLLO-II reference implementation in thousands of CPU cycles.

Instance KeyGen Encrypt Decap
ROLLO-II-128 3690 331 1195
ROLLO-II-192 3689 334 1258
ROLLO-II-256 4296 361 1604

Table 10: Performances of ROLLO-II optimized implementation in thousands of CPU cy-
cles.

3.3 Constant time Implementation

We provided a constant time version of the RSR algorithm 1 in the
Additional_Implementations/ folder. This implementation provides the following:

• Constant-time implementation of the Gaussian reduction and of the intersection of
vector spaces

• Manipulation of vector spaces of fixed dimension, regardless of the actual dimension
of the vector space S

The performances of the reference constant-time version are presented figure 11 for
ROLLO-I and 12 for ROLLO-II.

Instance KeyGen Encrypt Decap
ROLLO-I-128 3537 395 1754
ROLLO-I-192 4662 455 2286
ROLLO-I-256 6959 590 3594

Table 11: Performances of ROLLO-I constant time implementation in thousands of CPU
cycles.

4 Known Answer Test Values
Known Answer Test (KAT) values have been generated using the script pro-
vided by the NIST. They are available in the KAT/Reference_Implementation/ and
KAT/Optimized_Implementation/ folders.

23

Instance KeyGen Encrypt Decap
ROLLO-II-128 16986 1307 4484
ROLLO-II-192 19702 1438 5200
ROLLO-II-256 23364 1618 6241

Table 12: Performances of ROLLO-II constant time implementation in thousands of CPU
cycles.

Notice that one can generate the aforementioned test files using the kat mode of our
implementation. The procedure to follow in order to do so is detailed in the technical
documentation.

5 Security

5.1 Security Models and Hybrid Argument

IND-CPA. IND-CPA is generally proved through the following game: the adversary A
chooses two plaintexts µ0 and µ1 and sends them to the challenger who flips a coin b ∈ {0, 1},
encrypts µb into ciphertext c and returns c to A. The encryption scheme is said to be
IND-CPA secure if A has a negligible advantage in deciding which plaintext c encrypts.
This game is formally described hereunder on Fig. 4.

Expind−b
E,A (λ)

1. param← Setup(1λ)
2. (pk, sk)← KeyGen(param)
3. (µ0, µ1)← A(FIND : pk)
4. c∗ ← Encrypt(pk, µb, θ)
5. b′ ← A(GUESS : c∗)
6. RETURN b′

Figure 4: Experiment against the indistinguishability under chosen plaintext attacks

The global advantage for polynomial time adversaries (running in time less than t) is:

Advind
E (λ, t) = max

A≤t
Advind

E,A(λ), (4)

where Advind
E,A(λ) is the advantage the adversary A has in winning game Expind−b

E,A (λ):

Advind
E,A(λ) =

∣∣Pr[Expind−1
E,A (λ) = 1]− Pr[Expind−0

E,A (λ) = 1]
∣∣ . (5)

Hybrid argument. Alternatively (and equivalently by the hybrid argument), it is pos-
sible to construct a sequence of games from a valid encryption of a first message µ0 to a

24

valid encryption of another message µ1 and show that these games are two-by-two indis-
tinguishable. We follow this latter approach and prove the security of our KEM similarly
to [1].

5.2 IND-CPA security proof of ROLLO-I

Theorem 5.1. Under the Ideal LRPC indistinguishability 2.3 and the Ideal-Rank Support
Recovery 2.2 Problems, the KEM presented earlier in section 2.5.1 is indistinguishable
against Chosen Plaintext Attack in the Random Oracle Model.

Proof. We are going to proceed in a sequence of games. The simulator first starts from the
real scheme. First we replace the public key matrix by a random element, and then we use
the ROM to solve the Ideal-Rank Support Recovery.

We start from the normal game G0: We generate the public key h honestly, and E, c
also

• In game G1, we now replace h by a random vector, the rest is identical to the previous
game. From an adversary point of view, the only difference is the distribution on h,
which is either generated at random, or as a product of low weight vectors. This is
exactly the Ideal LRPC indistinguishability problem, hence

AdvG0
A ≤ AdvG1

A + AdvILRPCA

• In game G2, we now proceed as earlier except we receive h, c from a Support Recovery
challenger. After sending c to the adversary, we monitor the adversary queries to the
Random Oracle, and pick a random one that we forward as our simulator answer to
the Ideal-Rank Support Recovery problem. Either the adversary was able to predict
the random oracle output, or with probably 1/qG, we picked the query associated
with the support E (by qG we denote the number of queries to the random oracle G),
hence

AdvG1
A ≤ 2−λ + 1/qG · AdvIRSRA

which leads to the conclusion.

5.3 IND-CCA2 security proof of ROLLO-II

5.3.1 IND-CPA security proof of the ROLLO-II PKE

Theorem 5.2. Under the Ideal LRPC indistinguishability 2.3 and the Ideal-Rank Sup-
port Recovery 2.2 Problems, the encryption scheme presented earlier in section 2.5.2 in
indistinguishable against Chosen Plaintext Attack in the Random Oracle Model.

25

Proof. We are going to proceed in a sequence of games. The simulator first starts from the
real scheme. First we replace the public key matrix by a random element, and then we use
the ROM to solve the QC-Rank Support Recovery.

We start from the normal game G0: We generate the public key h honestly, and E, c
also

• In game G1, we now replace h by a random vector, the rest is identical to the previous
game. From an adversary point of view, the only difference is the distribution on h,
which is either generated at random, or as a product of low weight vectors. This is
exactly the Ideal LRPC indistinguishability problem, hence

AdvG0
A ≤ AdvG1

A + AdvILRPCA

• In game G2, we now proceed as earlier except we replace G(E) by random. It can
be shown, that by monitoring the call to the ROM, the difference between this game
and the previous one can be reduced to the QC-Rank Support Recovery problem, so
that:

AdvG1
A ≤ 2−λ + qG · AdvIRSRA .

• In a final game G3 we replace d = M ⊕ Rand by just d = Rand, which leads to the
conclusion.

5.3.2 A IND-CCA2 conversion of the ROLLO-II PKE

Let E be an instance of the ROLLO-II cryptosystem as described above. Let G, H, and
K. The KEM-DEM version of the ROLLO-II cryptosystem is defined as follows (following
[15]) :

When applying the HHK [15] framework for the Fujisaki-Okamoto transformation, one
can show that the final transformation is CCA-2 secure such that:

AdvCCA−2
A ≤ qG · δ + qV · 2−γ +

2qG + 1

|M|
+ 3AdvCPA

A

As our scheme is CPA secure, the last term is negligible, we can handle exponentially
large message space for a polynomial number of query, so the previous is too.

As shown before, our scheme is gamma-spread so again for a polynomial number of
verification query, the term in qV is negligible.

The tricky term remaining is qG · δ, this is the product of the number of queries to the
random oracle, by the probability of generating an decipherable ciphertext in an honest
execution. For real application, we want schemes to be correct enough so that the proba-
bility of such occurrence is very small. This often leads, in application in running with a
probability of a magnitude of 2−64. This may seem not low enough for pure cryptographic
security, however it should be noted this number, corresponds to the number of request,

26

• Setup(1λ): as before, except that k will be the length of the symmetric key being
exchanged, typically k = 256.

• KeyGen (param): exactly as before.

• Encap (pk): generate m
$← Fk (this will serve as a seed to derive the shared

key). Derive the randomness θ ← G(m). Generate the ciphertext c ← (u,v) =
E .Encrypt(pk,m, θ), and derive the symmetric key K ← K(m, c). Let d← H(m),
and send (c,d).

• Decap (sk, c,d): Decrypt m′ ← E .Decrypt(sk, c), compute θ′ ← G(m′), and (re-
)encrypt m′ to get c′ ← E .Encrypt(pk,m′, θ′). If c 6= c′ or d 6= H(m′) then abort.
Otherwise, derive the shared key K ← K(m, c).

Figure 5: Description of our proposal ROLLO-II.KEM.

adversarially generated where the simulator gives an honest answer to a decryption query,
which would mean that a single user would be able to do as many queries as expected by
the whole targeted users in a live application, so a little trade-off at this level seems more
than fair.

Security concerns and implementation details. Notice that while NIST only
recommends SHA512 as a hash function, the transformation of [15] would be danger-
ous – at least in our setting – if one sets G = H. Indeed, publishing the randomness
θ = G(m) = H(m) = d used to generate e1 and e2, would allow one to retrieve the secret
E. We therefore suggest to use SHA3-512 for G and SHA512 for H.

6 Known Attacks
In this section, we present the best known attacks against the IRSR 2.2, ILRPC 2.3 and
DIRSD 2.2.6 problems on which our schemes are based.

Both the ILRPC and DIRSD problems are decision problems. However, at the current
state-of-the-art, the best attacks consist in solving a search problem: finding a codeword of
a small weight in an ideal LRPC code for the ILRPC and solving an instance of the IRSD
problem for the DIRSD problem.

There exist two types of attacks on these problems:

• the combinatorial attacks where the goal is to find the support of the error or of the
codeword.

• the algebraic attacks where the opponent tries to solve an algebraic system by Gröbner
basis.

First, we deal with the combinatorial attacks for the IRSD and the ILRPC problems and in
a third subsection we discuss about the algebraic attacks.

27

6.1 Attack on the IRSD problem

For an [sn, n] ideal code over Fqm the best combinatorial attack to solve the IRSD problem
2.2.6 with an error of weight r is in:

O
(

((s− 1)nm)ωqrd
m(n+1)

sn e−m
)

operations in Fq. ω is the exponent of the complexity of the solution of a linear system.
This attack is an improvement of a previous attack described in [9], a detailed description

of the attack can be found in [3]. The general idea of the attack is to adapt the Information
Set Decoding attack for the Hamming distance. For the rank metric, the attacker tries and
guesses a subspace which contains the support of the error and then solves a linear system
obtained from the parity-check equations to check if the choice was correct.

The complexity of the best attack against IRSR problem is the same since there is no
known way to compute the support of an error without first computing this error.

This attack is a generic attack against the RSD problem, there is no known improvement
which exploit the ideal structure of the code.

Remark 6.1. Since the linear system is not random, it is reasonable to take ω = 2 for the
choice of the parameters of ROLLO-I and ROLLO-II, even if the attack described in [3]
takes ω = 3.

Let us remark that the choice of our parameter is flexible. We could take ω = 0 and
increase the parameters, which corresponds to only keeping the exponential complexity of
the attack, for instance by slightly increasing m.

6.2 Structural attack on ideal LRPC codes

Let C be an [2n, n]qm ideal LRPC code generated by the two polynomials (x,y) of support
F of dimension d. Let h = x−1y which generates the systematic parity-check matrix of C.
The problem is to recover the structure of C, given only access to h.

The most efficient known attack is to find a codeword of weight d in an [2n−
⌊
n
d

⌋
, n−⌊

n
d

⌋
]qm subcode C ′ of the dual code C⊥ generated by h, as described in [10]. The best

algorithm is the same decoding algorithm used in the previous subsection [3]. Its complexity
is in:

O

(nm)ωq
d

⌈
(n−bndc)m

2n−bndc

⌉
−m

However, the dual of an ideal LRPC code contains much more codeword of weight d
than a random code with the same parameters. Indeed, let H be the matrix of size n× 2n
generated by (x,y). By definition, H is a generator matrix of C⊥. Let (hi)16i6n be the
rows of H . For all 1 6 i 6 n, Supp(hi) = F =⇒ C⊥ contains qn codewords of the same
support. Thus, we have considered an attack in

O
(

(nm)ωqdd
m
2 e−m−n

)
28

for the choice of the parameters of ROLLO-I and ROLLO-II.
There exists a specific attack on the ideal LRPC codes which can be found in [13]. In

this article, the authors present an attack against double circulant LRPC codes but it can
be adapted straightforwardly in the case of ideal LRPC codes. However, the crucial point
of this attack is that the polynomial Xn − 1 has always X − 1 as divisor and may have
many more factors depending on n and q. In the case of ideal LRPC codes, we can choose
an irreducible polynomial P of degree n of Fq[X] to generate the quotient-ring Fq[X]/〈P 〉,
which completely negates this specific attack.

6.3 Algebraic attacks

For a long time algebraic attacks against the RSD problem were thought to be harmless,
two recent papers [4] and [5] have permitted to have a clear and better view of the situation
of algebraic attacks for rank metric. These results show that for our cryptographic when
r = O(

√
n) they are in fact the best attacks. We sum up in the following these results.

The purpose of algebraic attacks is to consider an RSD instance and to write it as a
system of equations, called a modeling, then if one solves this system, that is to say finds
one solution, it is a solution to the RSD instance.

Ourivski and Johansson pioneered the algebraic attack against RSD by giving a modeling
in [18], then Levy and Perret first proposed to solve it using Gröbner basis computations
in [16]. In [4], a new modeling was proposed, it is based on maximal minors taken from a
slightly different version of Ourivksi and Johansson’s modeling.

From now on, in this section, we deal with RSD instances based on [n, k]-code over F2m

with target rank weight r.
The modeling uses the fact that the vector e of small weight r can be written as a

product SC where S is a matrix containing a basis of the support of e and C is a matrix
containing the coordinates of each component of e in this basis. Those matrices are called
the support and the coordinate matrices.

Roughly, the system will consist in m
(
n−k−1

r

)
equations in

(
n
r

)
variables which are max-

imal determinants, in [4], this system was then solved by computing its Gröbner basis; in
[5], a different modeling enables one to solve it directly by linearization. More precisely, the
condition

m

(
n− k − 1

r

)
≥
(
n

r

)
(6)

is inherent to this system; when it is fulfilled, it corresponds to the overdetermined case, if
it is not, it corresponds to the underdetermined case.

Overdetermined case. If the condition (6) is fulfilled, solving the RSD problem is equiv-
alent to solving a linear system with m

(
n−k−1

r

)
equations in

(
n
r

)
variables, which can be

done with a cost in

O

(
m

(
n− k − 1

r

)(
n

r

)ω−1)
. (7)

29

On the one hand, if the condition (6) is widely fulfilled, there is an optimization in [5] to
reduce the complexity of (7) using a punctured version of the code. On the other hand, if
(6) is not fulfilled, one can reduce to it by guessing few variables at an exponential cost, it
is an hybrid attack, also in [5].

Underdetermined case. For cryptographic purpose, the parameters are chosen so that
they belong to an area where the condition (6) is obviously not fulfilled and where the
exponential cost of the hybrid attack would make it impractical, this particular area is
called the underdetermined case. The best known complexity in this case is also described
in [5]: it uses a variation of the aforementioned system together with a new setting coming
from the reduction between RSD and the MinRank problem. This new system, despite being
bigger, is sometimes sparser, so its resolution could take advantage of Wiedemann algorithm
to solve sparse linear systems.

More precisely, the complexity in the underdetermined case is

O
(
(Bb + Cb)A

ω−1
b

)
(8)

where

Ab :=
b∑

j=1

(
n

r

)(
mk + 1

j

)

Bb :=
b∑

j=1

(
m

(
n− k − 1

r

)(
mk + 1

j

))

Cb :=
b∑

j=1

j∑
i=1

(
(−1)i+1

(
n

r + i

)(
m+ i− 1

i

)(
mk + 1

j − i

))
.

and where b is the smallest positive integer so that the condition Ab−1 ≤ Bc+Cb is fulfilled.
When b ≥ 2, one uses Wiedemann algorithm, resulting in a new complexity of

O

Bb

(
k+r+1
r

)
+ Cb(mk + 1)(r + 1)

Bb + Cb

(
b∑

j=1

(
n

r

)(
mk + 1

j

))2
 . (9)

6.4 Quantum speed-up

For computational attacks, the quantum speed-up is easy to analyze. According to [7], a
slight generalization of Grover’s quantum search algorithm allows to divide by a factor 2 the
exponential complexity of the attacks. Thus the complexity of the quantum computational
attack is

• O
(

((s− 1)nm)ωq
1
2
(rdm(n+1)

sn e−m)
)
for the attack on the s− IRSD problem.

• O
(

(nm)ωq
1
2
(ddm2 e−m−n)

)
for the attack on ideal LRPC codes.

30

• at the best of our knowledge for algebraic attacks there is not any real quantum speed
up

7 Advantages and Limitations

7.1 Strengths

The proposed schemes are very efficient, both in terms of size of keys and computational
complexity. They also benefit from a constant time decoding algorithm and its failure
probability is very well studied and estimated and can easily be chosen to meet security
standards. Moreover, the choice of parameters is very versatile. For ROLLO-I and ROLLO-
II, there is a reduction to a well understood generic problem IRSD, which is a natural
generalization of Quasi-Cyclic RSD problem. This type of problems has been used for
many years for Hamming and Euclidean distances.

7.2 Limitations

Rank metric has very nice features, but the use of rank metric for cryptographic purposes
is not very old (1991). It may seems as a limitation, but still in recent years there have
been a lot of activities on understanding the inherent computational difficulty of the related
problems. The combinatorial attacks are very well understood, and the recent results of
[4, 5] permit to have a clear view on the complexity of algebraic attacks.

Like for cryptosystems à la McEliece, ROLLO-I and ROLLO-II security proofs rely on
the hardness of retrieving the structure of a structured code, in our case the ideal LRPC
codes. However, this problem has been also studied for Hamming and euclidean metrics and
is considered hard by the community (for instance, MDPC and NTRU-like cryptosystems
are based on it).

References
[1] Carlos Aguilar Melchor, Olivier Blazy, Jean-Christophe Deneuville, Philippe Gaborit,

and Gilles Zémor. Efficient encryption from random quasi-cyclic codes. CoRR,
abs/1612.05572, 2016.

[2] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography with constant
input locality. pages 92–110.

[3] Nicolas Aragon, Philippe Gaborit, Adrien Hauteville, and Jean-Pierre Tillich. A new
algorithm for solving the rank syndrome decoding problem. In Proc. IEEE Int. Sym-
posium Inf. Theory - ISIT, Vail, USA, 2018. IEEE.

31

[4] Magali Bardet, Pierre Briaud, Maxime Bros, Philippe Gaborit, Vincent Neiger, Olivier
Ruatta, and Jean-Pierre Tillich. An algebraic attack on rank metric code-based cryp-
tosystems. In Advances in Cryptology - EUROCRYPT 2020 - 30th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, Za-
greb, Croatia, May 10-14, 2020. Proceedings, 2020. To appear, preprint available on
https://arxiv.org/pdf/1910.00810.pdf.

[5] Magali Bardet, Maxime Bros, Daniel Cabarcas, Philippe Gaborit, Ray Perlner, Daniel
Smith-Tone, Jean-Pierre Tillich, and Javier Verbel. Algebraic attacks for solving the
rank decoding and minrank problems without Gröbner basis, 2020. Preprint available
on https://arxiv.org/pdf/2002.08322.pdf.

[6] Philippe Gaborit. Shorter keys for code based cryptography. In Proceedings of the
2005 International Workshop on Coding and Cryptography (WCC 2005), pages 81–91,
Bergen, Norway, March 2005.

[7] Philippe Gaborit, Adrien Hauteville, and Jean-Pierre Tillich. Ranksynd a PRNG based
on rank metric. In Post-Quantum Cryptography 2016, pages 18–28, Fukuoka, Japan,
February 2016.

[8] Philippe Gaborit, Gaétan Murat, Olivier Ruatta, and Gilles Zémor. Low rank parity
check codes and their application to cryptography. In Proceedings of the Workshop
on Coding and Cryptography WCC’2013, Bergen, Norway, 2013. Available on www.
selmer.uib.no/WCC2013/pdfs/Gaborit.pdf.

[9] Philippe Gaborit, Olivier Ruatta, and Julien Schrek. On the complexity of the rank
syndrome decoding problem. IEEE Trans. Information Theory, 62(2):1006–1019, 2016.

[10] Philippe Gaborit, Olivier Ruatta, Julien Schrek, and Gilles Zémor. New results for
rank-based cryptography. In Progress in Cryptology - AFRICACRYPT 2014, volume
8469 of LNCS, pages 1–12, 2014.

[11] Philippe Gaborit and Gilles Zémor. On the hardness of the decoding and the minimum
distance problems for rank codes. IEEE Trans. Inform. Theory, 62(12):7245–7252,
2016. https://arxiv.org/pdf/1404.3482.pdf.

[12] Adrien Hauteville and Jean-Pierre Tillich. New algorithms for decoding in the rank
metric and an attack on the lrpc cryptosystem. In 2015 IEEE International Symposium
on Information Theory (ISIT), pages 2747–2751. IEEE, 2015.

[13] Adrien Hauteville and Jean-Pierre Tillich. New algorithms for decoding in the rank
metric and an attack on the LRPC cryptosystem. In Proc. IEEE Int. Symposium Inf.
Theory - ISIT 2015, pages 2747–2751, Hong Kong, China, June 2015.

32

https://arxiv.org/pdf/1910.00810.pdf
https://arxiv.org/pdf/2002.08322.pdf
www.selmer.uib.no/WCC2013/pdfs/Gaborit.pdf
www.selmer.uib.no/WCC2013/pdfs/Gaborit.pdf
https://arxiv.org/pdf/1404.3482.pdf

[14] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public
key cryptosystem. In Joe Buhler, editor, Algorithmic Number Theory, Third Interna-
tional Symposium, ANTS-III, Portland, Oregon, USA, June 21-25, 1998, Proceedings,
volume 1423 of LNCS, pages 267–288. Springer, 1998.

[15] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the
Fujisaki-Okamoto transformation. In Theory of Cryptography Conference, pages 341–
371. Springer, 2017.

[16] Françoise Lévy-dit Vehel and Ludovic Perret. Algebraic decoding of codes in rank
metric. In proceedings of YACC06, Porquerolles, France, June 2006. available on
http://grim.univ-tln.fr/YACC06/abstracts-yacc06.pdf.

[17] Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo S. L. M. Barreto.
MDPC-McEliece: New McEliece variants from moderate density parity-check codes.
In Proc. IEEE Int. Symposium Inf. Theory - ISIT, pages 2069–2073, 2013.

[18] Alexei V. Ourivski and Thomas Johansson. New technique for decoding codes in the
rank metric and its cryptography applications. Problems of Information Transmission,
38(3):237–246, 2002.

33

http://grim.univ-tln.fr/YACC06/abstracts-yacc06.pdf

	History of updates on ROLLO
	Updates for April 22nd, 2020
	Updates between Round 1 and Round 2

	Specifications
	Presentation of rank metric codes
	General definitions
	Ideal codes

	Difficult problems in rank metric
	The Low Rank Parity Check codes
	A support recovery algorithm
	Algorithm
	Probability of failure

	Presentation of the schemes
	ROLLO-I as a KEM
	ROLLO-II as a PKE

	Representation of objects
	Parsing vectors from/to byte strings

	Parameters for our schemes
	General remarks
	ROLLO-I
	ROLLO-II

	Performances
	ROLLO-I
	ROLLO-II
	Constant time Implementation

	Known Answer Test Values
	Security
	Security Models and Hybrid Argument
	IND-CPA security proof of ROLLO-I
	IND-CCA2 security proof of ROLLO-II
	IND-CPA security proof of the ROLLO-II PKE
	A IND-CCA2 conversion of the ROLLO-II PKE

	Known Attacks
	Attack on the IRSD problem
	Structural attack on ideal LRPC codes
	Algebraic attacks
	Quantum speed-up

	Advantages and Limitations
	Strengths
	Limitations

	References

